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ABSTRACT 

The article reviews the different approaches used in computer aided molecular design. It also 

reviews current achievements in the field of chemo-informatics and their impact on modern 

drug discovery processes. The main data mining approaches used in chemo-informatics such 

as structural similarity matrices, and classification algorithms, are also outlined. In the 

conclusion, future prospects of chemo-informatics are also mentioned.  
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Introduction 

The society today faces many challenges such as 

AIDS, bacterial resistance etc that can have a 

chemical solution. For this, there is a need to 

develop environmentally benign synthetic 

methods. A tremendous work has been done and 

a bewildering variety of structural motifs have 

been discovered in nature. 

Traditional drug discovery process 

There are seven sequential steps (Augen, 2002) in 

the drug discovery process: disease selection, 

target hypothesis, lead compound identification 

(screening), lead optimization, pre-clinical trials & 

clinical trials and pharmacogenomic optimization. 

If any of these steps is slow, it slows down the 

entire process. The slow steps are known as the 

bottlenecks. Earlier, the main bottlenecks were 

the time and cost of making and testing new 

chemical entities (NCE). To reduce the costs, 

new technologies were required to be found 

which could replace the older tedious approach 

of synthesis and screening of the NCE. With the 

invention of HTS and newer technologies, the 

use of robotics was introduced into screening. 

Through this process, hundreds of thousands of 

individual compounds can be screened with rapid 

pace (Gallop et al., 1994; Hetch, 2002). Chemical 

information technology helps us to appreciate the 

richness and variety of chemical structural 

complexity. Computer Aided Molecular Design, 

CAMD, is a combination of computational 

chemistry and information technology tools that 

helps us to discover new and useful compounds. 

Computer Aided Molecular Design 

CAMD is a unifying theme that focuses on why 

do we do chemistry and how do we decide what 

to synthesize and study. Chemistry emphasizes 

the development of predictive tools for 

understanding structure-function relationships, 

and the use of CAMD techniques enhances our 

ability to predict chemical reactivity and design 

useful compounds. The goal of CAMD is to find 

ligands that are predicted to interact strongly with 

a host. Alternatively, this procedure can be 

reversed to search for hosts that will interact 

strongly with a given ligand. CAMD is an 

outgrowth of rational drug design (Martin, 1991) 

where the interactions are protein or DNA 

binding with substrates. But CAMD is not 

restricted to drug design. As organic and physical 

chemists search for guest-host systems with 

specificity in binding and catalysis (Julius, 1991; 

Organic „Tectons‟, 1995), the basic concepts of 

molecular field analysis and receptor mapping will 

be a unifying tool. Rapid advancements in 

chemistry will increasingly require an 

interdisciplinary approach; biochemistry, 

molecular biology, microbiology, cell biology, 

developmental biology will be key players along 

with the traditional areas of chemistry. 

The ready availability of chemical structure 

databases is playing an important role in 
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enhancing the drug discovery approach and 

CAMD.  

The basic principles of CAMD are outlined as 

shown in Fig. 1(Balbes, 1994). 

CAMD can be done in two ways: ligand based or 

receptor based. Receptor based design stats with 

a known receptor, such as a protein binding site 

or supramolecular host. Ligand based design uses 

a known set of ligands, but an unknown receptor 

site. Both approaches are actually very similar. 

Receptor based CAMD 

The first phase is to determine the structure of 

the binding site using standard structural analysis 

from X-ray diffraction, NMR, or calculations 

involving molecular orbital or molecular 

mechanics and dynamics techniques. In the 

absence of structural information, homology of 

the known receptor sequence with known 

structures that have been identified through 

database search may be a good starting point. 

The next phase is to generate a query for 

database searching. Building a simplified model 

of the receptor site generates the query. This 

model may be based on pharmacophore, which 

identifies a few specific interactions that are 

responsible for the binding. The pharmacophore 

can be generated by visual inspection or by 

computational techniques. In docking-based 

searches, the model is based on an analysis of 

steric interactions over the receptor site. 

Typically, a solvent accessible surface map is 

generated and binding pockets are identified on 

the host surface. The next phase is to search 

databases for ligands that may bind to the chosen 

receptor. The3D-pharmacophore is used in 

conformationally flexible searches for ligands that 

match the spatial distribution of the receptor or 

the receptor pocket can be used with auto-

docking to find ligands that acoid close-contacts. 

The results of the database search may be used 

directly or modified to produce candidates for 

further study. The new ligands or the hosts are 

then assessed for the use at hand. This 

assessment first involves docking the new 

molecule and evaluation of the full interaction by 

molecular orbital or molecular mechanics. Next, 

calculations are done to predict the binding 

constant or activity of the compound by using 

Gibb‟s free energy perturbation studies based on 

either Monte Carlo or Molecular dynamics 

simulations. 

Ligand based CAMD 

Ligand based design starts with a group of ligands 

that have known binding constants or biological 

activities. The first phase is to determine the 

structure of the ligands using standard structural 

analysis from X-ray diffraction, NMR, or 

calculations involving molecular orbital or 

molecular mechanics and dynamics techniques.  

The next phase is to generate a query for 

database searching. Building a simplified model 

of the receptor site generates the query. This 
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model is based on a pharmacophore, as in 

receptor-based design. The pharmacophore can 

be generated by visual inspection or by statistical 

techniques. One popular statistical technique is 

3D-QSAR as represented by the CoMFA 

approach (Cramer et al., 1988). 3D-QSAR maps 

the steric, charge, and hydrogen bonding 

interactions into a 3D-grid for each known 

ligand. These maps are then converted to find 

features that the active compounds have in 

common. The map of common features is then 

converted into a pharmacophore. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1  Basic phases of CAMD 

The next phase is to search databases for new 

ligands that may also bind to the chosen receptor. 

2D-substructure search databases based on the 

known ligands can be used, but they have not 

been very useful. Instead, the 3D-pharmacophore 

is used in conformationally flexible searches for 

ligands that match the spatial distribution of the 

known ligands.  

In both the techniques of CAMD, the candidates 

are synthesized and tested in the laboratory. 

Synthetic chemists increasingly use reaction 

database searches and artificial intelligence tools 

to design synthetic procedures. 

The CAMD can be used to search databases and 

help synthesize thousands of compounds every 

day. But can chemists make thousands of 

compounds a day? Yes, the answer lies in a newer 

technique of synthesis called as the combinatorial 

chemistry.   

Combinatorial chemistry 

Chemists now-a-days use combinatorial chemical 

techniques to produce more new compounds in 

shorter time period. Combinatorial chemistry 

systematically and repetitively yields a large array 

of compounds from a set of different types of 

reagents called as “building blocks”. But this 

process alone was not able to accelerate the drug 

discovery process. Therefore it was proposed that 

increasing the chemical diversity of compound 

libraries would enhance the drug discovery 

process. Chemo-informatics approaches would 

Determine structure of the ligands or the 

receptor site: 
 MO calculations  

 Molecular mechanics 

 Molecular dynamics/protein folding 

 Homology modeling with database 

Build a model of the receptor: 
 Propose pharmacophore 

 3D-QSAR of receptor mapping 

 Propose steric pocket 

Map surface with a probe 

  

Steric model from map (DOCK)

    

Search databases for ligands: 
 2D- substructure 

Steric search (docking) 

3D- search with pharmacophore 

Dock new ligands to receptor site: 

Molecular mechanics or MO 

 

Predict binding constants or activity: 
 1D, 2d or 3D- QSAR 

Free energy perturbations 

MO transition state calculations 

Synthesize ligands: 
Receptor database 
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now be introduced in order to optimize the 

chemical diversity of libraries. 

Chemo-informatics and chemical diversity 

To make a compound library with great chemical 

diversity, a variety of structural processing 

technologies for diversity analyses are created and 

applied. These computational approaches such as 

structural descriptor computations, structural 

similarity algorithms, classification algorithms, 

diversified compound selection and library 

enumerations are the components of chemo-

informatics.  

Technologies have been developed to recognize 

drug-like compounds from a diverse compound 

library (Ajay et al., 1998; Sadowski et al., 1998; 

Lipinski et al., 2001; Matter et al., 2001; Xu et al., 

2000). These technologies have partly solved the 

screening problems. The technologies should be 

filtered in order to recognize lead-like compounds 

instead of drug-like compounds. The absorption, 

distribution, metabolism, excretion and toxicity 

(ADMET) parameters should be simultaneously 

optimized.   

The lead optimization remains the most 

important bottleneck in the drug discovery 

process.  

To improve the probability of a HTS being 

having efficient ADMET parameters has led to 

the use of chemo-informatics methods while 

generating data using high throughput 

technologies so as to assure better ADMET 

properties while the compound is still in the 

developmental phase. This approach is known as 

a multi-parametric optimization strategy (Baxter et al., 

2001).   

Origin of chemo-informatics 

Chemo-informatics has emerged from several 

older disciplines such as computational 

chemistry, computer chemistry, chemo-metrics, 

QSAR, chemical information etc. Chemo-

informatics involves the use of computer 

technologies to process chemical data which 

involves the working with chemical structures 

which in turn leads to necessity of introduction 

of special approaches to represent, store and 

retrieve structures in a computer system. 

To make structure and sub-structure searching 

feasible on slow computer systems, many 

methods were attempted in order to find concise 

structural representations, such as linear 

notations. These convert structural graphs to 

strings that can be easily searched by a computer. 

Finally, an atom-by-atom search algorithm can be 

applied to a smaller number of compounds. 

Linear notations. 

Structure linear notations convert chemical 

structure connection tables to a string, a sequence 

of letters, using a set of rules. The earliest 

structure linear notation is the Wiswesser Line 

Notation (WLN). In mid 70s it was considered as 

the best tool to represent, retrieve and print 

chemical structures (www.asis.org). In WLN, 
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letters represents structural fragments and a 

complete structure is represented as a string. This 

system efficiently compressed structural data and 

was very useful for storing and searching 

chemical structures in low performance computer 

systems. Later, a new linear notation called as 

SMILESTM was developed (Weininger, 1988; 

www.esc.syrres.com). to successfully represent a 

structure, a linear notation should be 

canonicalized. That is, one structure should not 

correspond to more than one linear notation 

string, and conversely, one linear string should 

only be interpreted as one structure. 

Canonicalization  

If a structure corresponds to a unique WLN or a 

unique SMILESTM string, then the structure 

search results in a string match. WLN was unable 

to meet this requirement often. The SMILESTM 

approach could do this only after canonical 

processing. A molecular graph (2D structure) can 

also be canonicalized into a real number through 

a mathematical algorithm. The real number is 

identified as a molecular topological index. 

However, two different structures can have the 

same topological index. Weiner was the first to 

report the molecular topological index (Wiener, 

1947).  

Dimension reduction and descriptor 

selection. 

To view a one hundred- dimensional space, it is 

required to project the higher dimensional data 

space to two- or three- dimensional space. This is 

known as dimension reduction. 

Mathematically, a library with n compounds and 

represented by m (m>3) descriptors is an n x m 

dimensional matrix. Many dimension reduction 

approaches are available. 

Multidimensional scaling 

Multidimensional scaling (MDS) (Cox and Cox, 

2000) or artificial neural networks (ANN) 

methods are traditional approaches for dimension 

reduction. MDS is a non-linear mapping 

approach. In this, the objects are moved around 

in the space defined by the specified number of 

dimensions and, then checks how well the 

distances between objects can be reproduced by 

the new configuration. In other words, MDS uses 

a function minimization algorithm that evaluates 

different configurations with the goal of 

maximizing the goodness-of-fit (or minimizing 

“lack of fit”) (www.statsoft.com).  

Self-organizing map (SOM) 

Self-organizing map (SOM) is one of the ANN 

methods. It is a vector quantization algorithm 

that creates reference vectors in a high-

dimensional input space and uses them, in an 

ordered fashion, to approximate the input 

patterns in image space. To do this it defines 

local order relationships between the reference 

vectors so that they are made to depend on each 

other as though their neighboring values would 

lie along a hypothetical “elastic 
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surface”(Gasteiger and Zupan, 1993). The SOM 

is therefore able to approximate the point density 

function, p (x), of a complex high dimensional 

input space, down to a two-dimensional space, by 

preserving the local features of the input data 

(Bernard et al., 1998). PCA and FA 

Principal component analysis (PCA) (Joliffe, 

1986) and factor analysis (FA) (Malinowski and 

Howrey, 1980) are usually used to filter out 

superfluous descriptors and, eliminate descriptors 

having minor information contributiwon. PCA is 

used to transform a number of potentially 

correlated variables (descriptors) into a number 

of relatively independent variables that then can 

be ranked based upon their contributions for 

explaining the whole data set. The transformed 

variables that can explain most of the 

information in the data are called principal 

components. The first principal component 

accounts for as much of the variability in the data 

as possible, and each succeeding components 

accounts for as much as the remaining variability 

as possible. The components having minor 

contribution to the data set may be discarded 

without losing too much information. FA uses an 

estimate of common variance among the original 

variables in order to generate the factor solution. 

A factor is a linear combination of original 

variables. The number of factors will always be 

less than the number of original variables. So, 

selecting the number of factors to keep for 

further analysis using common factor analysis is 

more problematic than is selecting the principal 

components. If the number of principal 

components or factors is less than four, then the 

multi-dimensional data can be graphed into two- 

or three- dimensional space. To validate the 

dimension reduction results, a technology called 

as the chemical structure-related data 

visualization is used. 

Descriptor selection 

Successful data mining depends on good 

descriptor selection. Correlation analysis can be 

used to understand the computational problem 

that is being tried to solve. The criteria used for 

selecting descriptors should be: (1) the selected 

descriptors should be informative, (2) the 

selected descriptors should be bioactivity related, 

(3) the selected descriptors should be 

independent of each other, (4) the selected 

descriptors should be simple to extract, easy to 

explain to a chemist, invariant to irrelevant 

transformations, insensitive to noise, and efficient 

to discriminate patterns between different 

categories. Thorough research has led to the 

conclusion that the 2D descriptors perform 

significantly better than the 3D descriptors 

(Brown et al., 1996).  

Pattern recognition 

The core technology of data mining is pattern 

recognition. In chemo-informatics, regression 

and classification are commonly used pattern 
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recognition technologies. Regression analysis is 

applied to the variables that have continuous 

values. Table 1 shows certain common patterns 

in chemo-informatics (Xue et al., 2001). 

In order to compare patterns, one needs 

similarity or distance measurements. 

Table 1 Common pattern in chemo-

informatics. 

Method Methodolody 

Fingerprint This pattern has no human bias as it 
is generated systematically from an 
algorithm. This is a topological 
pattern and is used in HTS data 
mining. 

Regression Regression methods are the most 
traditional approaches for pattern 
recognition. These methods are 
based on the assumption that the 
variables are continous and the curve 
shapes are pre-defined. In multi-
dimensional data where the curve 
patterns are not known, genetic 
algorithms may be applied to 
partially solve the problem. 

Generic structure or 
Markush structure 

This is a topological pattern used by 
chemists for many years. It is 
determined by experience. It is an 
efficient way to represent an 
unlimited number of compounds 
with the same scaffold. Additional 
restrictions can be applied to make 
the pattern more specific. It is 
suitable for lead optimization and 
hit-to lead efforts. 
 

Three-dimensional 
pharmacophore 

This pattern is derived, manually or 
computationally, from a three-
dimensional molecular model. The 
pattern is based upon a physical 
model and binding mechanism. It is 
sensitive to conformation changes. 
Better results are obtained when 
supported by crystal or NMR 
structural data. It is suitable for lead 
optimization. 
 

Hierarchial clustering This approach assumes the objects 
have hierarchical characters. The 
methods require similarity or 
distance matrices. The approach may 
produce multiple answers for users 
to explain or with which to 
experiment. 

 

Non-hierarchial 
clustering 

The approach assumes the objects 
have nonhierarchical characters, and 
the number of clusters is known 
prior the computation. The  method 
requires similarity or distance 
matrices. The approach may produce 
multiple answers for users to explain 
or with which to experiment. 

 

Decision tree 
classification 

This approach is applied when there 
are a great number of descriptors 
and, the descriptors have various 
value types and ranges. 

 

 

Similarity or distance metrics. 

Many pattern recognition techniques require 

distance or similarity measurements to 

quantitatively measure the distance or similarity 

of two objects. Euclidean distance, Mahalanobis 

distance and correlation coefficients are 

commonly used for distance measurement.  

The Tanimoto coefficient is commonly used for 

similarity measurements of bit-strings of 

structural fingerprints. 

Clustering 

Cluster analysis (CA) encompasses a number of 

different classification algorithms. CA algorithms 

belong to two categories: hierarchial and non-

hieracrchial (partitional) clustering (Willet, 1987).  

Correct clustering results rely upon: (1) proper 

structure representation, (2) suitable data 

normalization, and (3) carefully selected cluster 

algorithms and proper parameter settings. Data 

normalization is the basis for comparing 

experiments within large series when 

experimental conditions may not be identical. 
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Normalization ensures that the experimental 

quality of the data is comparable and, sound 

mathematical algorithms have been employed. 

Normalization includes various options to 

standardize data and to adjust background levels 

and correct gradients. The commonly used 

normalization functions are linear normalization, 

Ratio normalization and Z-score normalization 

(Jarvis and Patrick, 1973).  Partitioning  

Partitioning algorithms, such as, decision trees, 

are non-parametric approaches. It is difficult for 

regression or parametric classification approaches 

to work on heterogeneous types of data. The 

excessively large number of descriptors can make 

clustering computation feasible. Decision trees 

are introduced to solve these problems. One of 

the most popular decision tree techniques is 

recursive partitioning (RP). 

Application in drug discovery 

The CAMD approaches and chemo-informatics 

have been widely applied in the drug discovery 

process. The major applications are outlined 

below: 

1. Compound selection 

The main tasks for compound selection are: (1) 

to select and acquire compounds from external 

sources that will provide complementary diversity 

to existing libraries, (2) to select for screening, 

from a corporate compound pool, a subset that 

provides diversity representation, (3) to select 

reagents to make a combinatorial library which 

will maximize diversity, and (4) to select 

compounds, from available compound 

collections, that are similar to known ligands yet, 

with different and novel scaffolds. Diversity-

based compound selection has been done using 

many classification approaches. 

2. Virtual library generation. 

A virtual library can be generated using a 

computational approach. The criteria for 

generating a general (not focused) virtual library 

are: (1) diversity, (2) ADMET properties, and (3) 

synthetic accessibility. There are a number of 

ways to generate a diverse virtual library. 

However, it is challenging to make a virtual 

library that meets the criteria set forth above in 

(2) and (3). Although work on this aspect has 

been reported [86-87], more investigation is 

required. 

3. Virtual screening of compounds. 

Virtual screening is actually one of the 

computational tools used to filter out unwanted 

compounds from physical libraries or in silico 

libraries. If the target structure is known, one of 

the structure-based virtual screening methods 

that can be used is high throughput docking [92-

93]. If the target structure is unknown, but the 

ligands from the literature or, competitors are 

known, then, similarity approaches can be applied 

(Xu and Hagler, 2002). If neither target structure 

nor ligand structure is known, then SAR patterns 

can be derived from experimental screening data 
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Selecting compounds 

 

Screening compounds 
(HTS) 

 

Satisfied lead candidates 

 

Mining HTS data 

 

Compound Pool 
• Corporate inventory 

• Commercial availability 

• Virtual compounds  
  

 

Activity-related patterns 
• From literature   

• From HTS data 

• From computation 

 

by statistical approaches. Also, virtual screening is 

a great tool for the design of a combinatorial 

library with a given target. 

4. Structure activity relationship studies. 

The purpose of Sequential HTS is to maximize 

receptor ligand interaction information by using 

HTS and CC technologies, discover novel leads 

as soon as possible and, minimize HTS and 

library production costs (Fig. 2). Sequential HTS 

screens compounds iteratively for activity, 

analyzes the results and, selects a new set of 

compounds for next screening, based on what 

has been learned from the previous screens. The 

iteration ends when the desired, nano-molar, 

novel leads are identified. Compound selection is 

driven by rapid SAR analyses using recursive-

partitioning techniques. Although there are not 

many publications on the subject, sequential HTS 

has been studied in many pharmaceutical 

companies under different terminologies, such as: 

recursive screening, and progressive screening. 

5. ADMET calculation of compounds by computational 

methods. 

Higher-throughput, in vitro assays can be used to 

evaluate the ADMET characteristics of potential 

leads at earlier stages of development. This is 

done in order to eliminate candidates as early as 

possible, thus avoiding costs, which would have 

been expended on chemical synthesis and 

biological testing. Scientists are developing 

computational methods to select only 

compounds with reasonable ADMET properties 

for screening. Molecules from these 

computationally screened virtual libraries can 

then be synthesized for high-throughput 

biological activity screening. As the predictive 

ability of ADME/Tox software improves, and as 

pharmaceutical companies incorporate 

computational prediction methods into their 

R&D programs, the drug discovery process will 

move from a screeningbased to a knowledge-

based paradigm. Under multi-parametric 

optimization drug discovery strategies, there is no 

excuse for failing to know the relative solubility 

and permeability rankings of collections of 

chemical compounds for lead identification. 

 

 

 

 

 

 

 

 

 

Fig. 2 Sequential High Throughput 

Screening 

Futuristic use of chemo-informatics and 

CAMD 

In the past decade this two techniques have 

developed vastly and attained many achievements 

in the field of drug discovery. The newer 
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challenge for this techniques is the multi-

parametric optimization technique for the in silico 

optimization of ADMET parameters of the lead 

compounds along with their HTS via predictive 

computational models. The molecules from these 

computationally screened virtual libraries can 

then be synthesized for high-throughput 

biological activity screening. Many new 

technologies such as support vector machines 

(SVM) have found recent scientific applications. 

SVM may be able to eliminate many problems 

that are encountered through other approaches 

such as decision trees or neural networks. 
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